2,039 research outputs found

    Carbohydrate gel ingestion significantly improves the intermittent endurance capacity, but not sprint performance, of adolescent team games players during a simulated team games protocol

    Get PDF
    The aim of this study was to investigate the influence of ingesting a carbohydrate (CHO) gel on the intermittent endurance capacity and sprint performance of adolescent team games players. Eleven participants [mean age 13.5 ± 0.7 years, height 1.72 ± 0.08 m, body mass (BM) 62.1 ± 9.4 kg] performed two trials separated by 3–7 days. In each trial, they completed four 15 min periods of part A of the Loughborough Intermittent Shuttle Test (LIST), followed by an intermittent run to exhaustion (part B). In the 5 min pre-exercise, participants consumed 0.818 mL kg−1 BM of a CHO or a non-CHO placebo gel, and a further 0.327 mL kg−1 BM every 15 min during part A of the LIST (38.0 ± 5.5 g CHO h−1 in the CHO trial). Intermittent endurance capacity was increased by 21.1% during part B when the CHO gel was ingested (4.6 ± 2.0 vs. 3.8 ± 2.4 min, P < 0.05, r = 0.67), with distance covered in part B significantly greater in the CHO trial (787 ± 319 vs. 669 ± 424 m, P < 0.05, r = 0.57). Gel ingestion did not significantly influence mean 15 m sprint time (P = 0.34), peak sprint time (P = 0.81), or heart rate (P = 0.66). Ingestion of a CHO gel significantly increases the intermittent endurance capacity of adolescent team games players during a simulated team games protocol

    Surface plasmon resonance imaging for affinity-based biosensors

    Get PDF
    SPR imaging (SPRi) is at the forefront of optical label-free and real-time detection. It offers the possibility of monitoring hundreds of biological interactions simultaneously and from the binding profiles, allows the estimation of the kinetic parameters of the interactions between the immobilised probes and the ligands in solution. We review the current state of development of SPRi technology and its application including commercially available SPRi instruments. Attention is also given to surface chemistries for biochip functionalisation and suitable approaches to improve sensitivity

    Substitution of antibodies and receptors with molecularly imprinted polymers in enzyme-linked and fluorescent assays

    Get PDF
    A new technique for coating microtitre plates with molecularly imprinted polymers (MIP), specific for low-molecular weight analytes (epinephrine, atrazine) and proteins is presented. Oxidative polymerization was performed in the presence of template; monomers: 3-aminophenylboronic acid, 3- thiopheneboronic acid and aniline were polymerized in water and the polymers were grafted onto the polystyrene surface of the microplates. It was found that this process results in the creation of synthetic materials with antibody-like binding properties. It was shown that the MIP-coated microplates are particularly useful for assay development. The high stability of the polymers and good reproducibility of the measurements make MIP coating an attractive alternative to conventional antibodies or receptors used in ELISA

    Perspective - an age of sensors

    Get PDF
    There could not be a better time to launch a new venture in sensors, and the exploration of the biological interface with physicochemical devices offers especially exciting opportunities

    Nano-Porous Light-Emitting Silicon Chip as a Potential Biosensor Platform

    Get PDF
    Nano-porous silicon (PS) offers a potential platform for biosensors with benefits both in terms of light emission and the large functional surface area. A light emitting PS chip with a stable and functional surface was fabricated in our laboratory. When protein was deposited on it, the light emission was reduced in proportion to the protein concentration. Based on this property, we developed a rudimentary demonstration of a label-free sensor to detect bovine serum albumin (BSA). A serial concentration of BSA was applied to the light chip and the reduction in light emission was measured. The reduction of the light intensity was linearly related to the concentration of the BSA at concentrations below 10-5 M. The detection limit was 8×10-9 M

    Circadian preference and physical and cognitive performance in adolescence:A scoping review

    Get PDF
    Adolescence is a crucial period of development which coincides with changes in circadian rhythmicity. This may augment the impact of circadian preference on performance in this group. We aimed to scope the literature available on chronotypes and their effect on physical and mental aspects of performance in adolescents. Methods: Studies were identified by systematically searching bibliographical databases and grey literature. Results: The Morningness-Eveningness Questionnaire was the most frequently reported tool for circadian preference assessment. Academic achievement was the most prevailing outcome, with evidence suggesting that morning type adolescents tend to outperform evening types, yet the results vary depending on multiple factors. Performance in tests of intelligence and executive functions was generally better at optimal times of the day (synchrony effect). Physical performance was examined in 8 studies, with very heterogeneous outcomes. Conclusions: Although the associations between circadian preference and performance in adolescents are evident in some areas, there are many factors that may be involved in the relationship and require further investigation. This review highlights the assessment of physical performance in relation to chronotypes, the multidimensional assessment of circadian preference, and the need for longitudinal studies as priorities for further research

    Tunable 3D nanofibrous and bio-functionalised PEDOT network explored as a conducting polymer-based biosensor

    Get PDF
    Conducting polymers that possess good electrochemical properties, nanostructured morphology and functionality for bioconjugation are essential to realise the concept of all-polymer-based biosensors that do not depend on traditional nanocatalysts such as carbon materials, metal, metal oxides or dyes. In this research, we demonstrated a facile approach for the simultaneous preparation of a bi-functional PEDOT interface with a tunable 3D nanofibrous network and carboxylic acid groups (i.e. Nano-PEDOT-COOH) via controlled co-polymerisation of EDOT and EDOT-COOH monomers, using tetrabutylammonium perchlorate as a soft-template. By tuning the ratio between EDOT and EDOT-COOH monomer, the nanofibrous structure and carboxylic acid functionalisation of Nano-PEDOT-COOH were varied over a fibre diameter range of 15.6 ± 3.7 to 70.0 ± 9.5 nm and a carboxylic acid group density from 0.03 to 0.18 μmol cm−2. The nanofibres assembled into a three-dimensional network with a high specific surface area, which contributed to low charge transfer resistance and high transduction activity towards the co-enzyme NADH, delivering a wide linear range of 20–960 μM and a high sensitivity of 0.224 μA μM−1 cm−2 at the Nano-PEDOT-COOH50% interface. Furthermore, the carboxylic acid groups provide an anchoring site for the stable immobilisation of an NADH-dependent dehydrogenase (i.e. lactate dehydrogenase), via EDC/S–NHS chemistry, for the fabrication of a Bio-Nano-PEDOT-based biosensor for lactate detection which had a response time of less than 10 s over the range of 0.05–1.8 mM. Our developed bio-Nano-PEDOT interface shows future potential for coupling with multi-biorecognition molecules via carboxylic acid groups for the development of a range of advanced all-polymer biosensor

    Biomimetic sensors for HbA1c

    Get PDF
    Diabetes mellitus is a growing health problem worldwide. Suitable long-term control and management of this disease are enabled by determination of glycated haemoglobin (HbA1c) in blood. The results are given as %HbA1c of total haemoglobin. Presently available tests vary in cost and convenience and there is an identified need to introduce improved equipment for self-monitoring. This dissertation focuses on fast and straightforward detection of glycated haemoglobin (HbA1c) using cyclic voltammetry and chronoamperometry. Haemoglobin was determined by monitoring its reaction with potassium ferricyanide on screen printed electrodes at an oxidative potential +500 mV. A working electrode was modified with carbon nanotubes to enhance electron transfer. A calibration curve was linear in a range from 0.83 to 83 mg/mL. Another innovative approach to detecting haemoglobin using its enzymatic activity was also developed. Detection of haemoglobin was performed with hydroquinone and hydrogen peroxide on screen printed electrodes at a potential -400 mV in a Flow Injection Analysis system (FIA). Cont/d.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Conducting polymer-reinforced laser-irradiated graphene as a heterostructured 3D transducer for flexible skin patch biosensors

    Get PDF
    Flexible skin patch biosensors are promising for the noninvasive determination of physiological parameters in perspiration for fitness and health monitoring. However, various prerequisites need to be met for the development of such biosensors, including the creation of a flexible conductive platform, bending/contact stability, fast electrochemical kinetics, and immobilization of biomolecules. Here, we describe a conducting polymer-reinforced laser-irradiated graphene (LIG) network as a heterostructured three-dimensional (3D) transducer for flexible skin patch biosensors. LIG with a hierarchically interconnected graphene structure is geometrically patterned on polyimide via localized laser irradiation as a flexible conductive platform, which is then reinforced by poly(3,4-ethylenedioxythiophene) (PEDOT) as a conductive binder (PEDOT/LIG) with improved structural/contact stability and electrochemical kinetics. The interconnected pores of the reinforced PEDOT/LIG function as a 3D host matrix for high loading of “artificial” (Prussian blue, PB) and natural enzymes (lactate oxidase, LOx), forming a compact and heterostructured 3D transducer (LOx/PB-PEDOT/LIG) for lactate biosensing with excellent sensitivity (11.83 μA mM–1). We demonstrated the fabrication of flexible skin patch biosensors comprising a custom-built integrated three-electrode system achieve amperometric detection of lactate in artificial sweat over a wide physiological linear range of 0–18 mM. The advantage of this facile and versatile transducer is further illustrated by the development of a folded 3D wristband lactate biosensor and a dual channel biosensors for simultaneous monitoring of lactate and glucose. This innovative design concept of a heterostructured transducer for flexible biosensors combined with a versatile fabrication approach could potentially drive the development of new wearable and skin-mountable biosensors for monitoring various physiological parameters in biofluids for noninvasive fitness and health management

    Modulating Electrode Kinetics for Discrimination of Dopamine by a PEDOT:COOH Interface Doped with Negatively Charged Tricarboxylate

    Get PDF
    The rapidly developing field of conducting polymers in organic electronics has many implications for bioelectronics. For biosensing applications, tailoring the functionalities of the conducting polymer’s surface is an efficient approach to improve both sensitivity and selectivity. Here, we demonstrated a facile and economic approach for the fabrication of a high-density, negatively charged carboxylic-acid-group-functionalized PEDOT (PEDOT:COOH) using an inexpensive ternary carboxylic acid, citrate, as a dopant. The polymerization efficiency was significantly improved by the addition of LiClO4 as a supporting electrolyte yielding a dense PEDOT:COOH sensing interface. The resulting PEDOT:COOH interface had a high surface density of carboxylic acid groups of 0.129 μmol/cm2 as quantified by the toluidine blue O (TBO) staining technique. The dopamine response measured with the PEDOT:COOH sensing interface was characterized by cyclic voltammetry with a significantly reduced ΔEp of 90 mV and a 3-fold increase in the Ipa value compared with those of the nonfunctionalized PEDOT sensing interface. Moreover, the cyclic voltammetry and electrochemical impedance spectroscopy results demonstrated the increased electrode kinetics and highly selective discrimination of dopamine (DA) in the presence of the interferents ascorbic acid (AA) and uric acid (UA), which resulted from the introduction of negatively charged carboxylic acid groups. The negatively charged carboxylic acid groups could favor the transfer, preconcentration, and permeation of positively charged DA to deliver improved sensing performance while repelling the negatively charged AA and UA interferents. The PEDOT:COOH interface facilitated measurement of dopamine over the range of 1–85 μM, with a sensitivity of 0.228 μA μM–1, which is 4.1 times higher than that of a nonfunctionalized PEDOT electrode (0.055 μA μM–1). Our results demonstrate the feasibility of a simple and economic fabrication of a high-density PEDOT:COOH interface for chemical sensing, which also has the potential for coupling with other biorecognition molecules via carboxylic acid moieties for the development of a range of advanced PEDOT-based biosensor
    corecore